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INTRODUCTION

The following theorem of Hobby and Rice [6] plays a central role in this
paper.

THEOREM (Hobby-Rice). Let {u1(t), ... , un(t)} be any sequence of linearly
independent functions in V[O, 1]. Then there exist points 0 = TO < 'i1 < ... <
'1k < '1k+l = 1, k ,,::; n, such that

1= 1,2,... , n.

This theorem is also valid when the Lebesgue measure, dt, is replaced by
any finite nonatomic measure dfL on [0, 1] and V[O, 1] is replaced by
V(dfl-; [0, 1]). This form of the Hobby-Rice theorem will not concern us
here.

The proof of the above result given by Hobby and Rice relies upon the
antipodal mapping theorem of Borsuk. Their proof is complicated by the
construction of the mapping to which the Borsuk theorem is applied.
Recently, by a clever choice of the mapping function, Pinkus [15] discovered
a very short proof of the Hobby-Rice theorem which avoids this difficulty.
We will give below yet another proof which shows the relationship of the
Hobby-Rice theorem to the Gohberg-Krein theorem on n-widths; see
Lorentz [11, p. 137].

As far as we are aware, the main application of the Hobby-Rice theorem
(in the generality stated above) is in its use in proving the following result
of Krein [10]: There exists no finite-dimensional subspace V of V[D, 1J
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which admits for every fE V[O, 1] a unique best V approximation by
elements of V. This important result on V approximation can also be proven
by elementary methods, see [10].

Another use of the Hobby-Rice theorem allows one to obtain good V
approximations to f from U = U(u1 , ... , un), the linear subspace spanned
by U1(t), ... , unCt), by interpolatingfat the "canonical" points {Ti : 1 :(; i :(; k}.
This program raises several questions concerning the points whose existence
is asserted in the Hobby-Rice theorem. Specifically, what is the value of k,
are the points unique, can we indeed interpolate at these points, and when is
the interpolant a best V approximation to f?

The purpose of this paper is an attempt to give a satisfactory answer to
these questions when U is a weak Chebyshev subspace (see Section 1 for a
definition of this familiar notion). We will subsequently apply our results
to V approximation by weak Chebyshev systems and discuss their relation
ship to recent results of Karlin on interpolating perfect splines [7] (see also
de Boor [1]). Let us emphasize here that the necessity of examining these
questions for weak Chebyshev subspaces is dictated by the recent application
of spline functions to the solution of certain extremal problems in U' as
discussed by Karlin [7], Micchelli and Miranker [12], and Micchelli, Rivlin,
and Winograd [14]. For a discussion of the relationship of the Envelope
Theorem of [12] to the result in [7, 14] see [19].

In the last section of the paper we include some remarks related to an
extremal problem studied by de Boor in [2].

Now, let us give a proof of the Hobby-Rice theorem.

Proof Clearly, we may assume without loss of generality that
Ul(t), ... , un(t) are continuous in [0, 1]. The Gohberg-Krein theorem tells us
that for every q > 1 there exists a nontrivial polynomial Pq of degree :(;n
such that its best approximation in U[O, 1] by the subspace U = U(u1 , ... , un)
is zero. Thus

f Ipq{t)l
q
- 1sgn Pq(t) ul(t) dt = 0,

o
1= 1,2,... , n.

Normalize pq so that f~ I pq{t)1 dt = 1. Since pq has at most n zeros we may
pass to the limit above, q ---+ 1+, perhaps through a subsequence, and prove
the theorem.

Let 'us note that the proof of the Gohberg-Krein theorem, given in Lorentz
[11], uses the antipodal mapping theorem. When U is a weak Chebyshev
subspace an elementary proof of the Hobby-Rice theorem is available. This
proof which we present in Section 1.employs a variational argument based
on a recent result of Zielke [18]; see also Zalik [17] on the existence of
Chebyshev extensions.



Ll APPROXIMATION BY CHEBYSHEV SYSTEMS

1. BEST V ApPROXIMATION BY WEAK CHEBYSHEV SYSTEMS

3

Let us recall that a sequence of real-valued functions {ul(x), ... , un(x)},
continuous on [0, 1], is called a Chebyshev system on the open interval
(0, 1) provided that the nth order determinant

V (Ul ,...,Un) - d t ".' .f )'1- e I! tI;\Xj I

Xl"'" X n

is strictly positive for °< Xl < ... < X n < 1. A linearly independent
sequence of continuous real-valued functions {ul(x), ... , un(x)} is called a
weak Chebyshev system provided that the above determinant is nonnegative
for °< Xl < ... < Xn < 1. We will denote by U (=V(ul ,... , un)) the1inear
subspace spanned by the functions ul(x), ... , un(x). Also, the convexity cone K
(=K(ul , ... , un)) consists of all real-valued functions f defined on (0, 1) for
which the determinant

is nonnegative for °< Xl < ... < Xn+l < 1.
We will also use the terminology that V is a weak Chebyshev subspace

of qo, 1] of dimension n, provided that V is a linear space spanned by some
weak Chebyshev system {ul(x), ... , un(x)}. When we speak of the convexity
cone K (=K(V)) of U we mean the set K(ul , ... , un) U -K(ul ,... , Un)' This
set is invariant under a change of basis in U. The class of all functions in K
which are continuous on the closed interval [0, 1] will be denoted by
(=Ko(U)).

LEMMA I. Let V be a weak Chebyshev subspace of dimension n of qo, 1].
Suppose h E Leo [0, 1], meas{x: hex) = O} = 0, and J~ hex) u(x) dx = 0, U E U.
Then h has at least n sign changes in [0, 1].

Proof Suppose to the contrary that h has I sign changes with I < n
occurring at occurring at °< 71 < ... < T! < 1; then

t (~l)i (i+l ! h(x) I u(x) dx = 0,
1.=0 7'i

For 8 > 0 and V = V(ul , .•. , un), we define

U E U.

ulx; 8) = Uj8(27T)li2)rexp(-(x - t)2j282) Ui(t) dt,
o

i = 1, ... ,11;
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then {u1(x; 8),... , uix; 8)} is a Chebyshev system and lim6_>0+ Ui(X; 0) = Ui(X),
x E (0, 1), i = 1,2,... , n; see Karlin and Studden [9].

For any 0 > 0, there is a u(x; 0) = L:7~1 a/ui(x; 0) with (-l)i u(x; 0) > 0,
X E (Ti, Ti+l), i = 0, 1, ..., I, and normalized so that max{[ u(x; 0)1:°~ x ~ I} = 1; see Karlin and Studden [9]. Thus there exists a sequence
On ~ 0+ such that u(x; 8n)~ u(x), x E (0, 1), where u(x) is a nontrivial
element of U with (-l)i u(x) ;?': 0, X E (Ti, Ti+1), i = 0, 1,... , I. We may
substitute u into (1) and conclude that J~ [h(x) [ . I u(x)I dx = 0. This contra
diction implies that k = n and the lemma is proved.

Remark 1. The hypothesis that meas{x: hex) = o} = °in Lemma 1 is
essential as it is possible that U may have lower dimension on subintervals
of (0, 1). This frequently occurs when dealing with spline functions. However,
when U is spanned by a Chebyshev system on (0, 1), that is, U is a Chebyshev
subspace, this does not happen. In this case the hypothesis on h may be
replaced by the weaker requirement that meas{x: h(x) =1= o} > 0.

An immediate application of the Hobby-Rice theorem and Lemma 1
gives

LEMMA 2. Let U be a weak Chebyshev subspace ofdimension n. Then there
exists a set of points, °= TO <Tl ... < Tn < Tn+1 = 1, such that

f (-I)i {iH U(x) dx = 0,
2=0 'Ti

UE U. (2)

We will now give a variational proof of this lemma.

Proof Let U6 denote the subspace spanned by the functions {u1(x; 0), ... ,
un(x; o)}, and choose a function un+1(x; 8) so that {u1(x; 0), ... , Un+1(x; o)}
is also a Chebyshev system. The existence of a function with this property
was recently proved by Zielke [18]; see also Zalik [17].

Consider the minimum problem

min Jl I Un+-l(x; 0) - u(x) Idx.
U E U6 0

Since, for every u E U6 , the function Un+1(x; 0) - u(x) has at most n zeros
on [0, 1], we may use a standard variational argument and conclude that
there exist points °= T06 < T16 < ... < Tl/ < T%+1 = 1, k ~ n, with

k 'T~+1

I (-I)i f 6 uix; o)dx = 0,
z=l 'Ti

j = 1,2,... , n. (3)

We may easily pass to the limit in (3), perhaps through a subsequence, and
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conclude that there exist points 0 = 'To < '11 < ". < Tl < T!+l = 1, 1~ n,
such that

l Ti+l

~ (-1); f u(x) dx = 0,
~=1 Ti

UE U.

According to Lemma 1, 1 = n and thus the proof is complete.
Our intention now is to give a sufficient condition on U which implies that

we may interpolate at '11 "", Tn' To this end, we define for every
o < Xl < ... < X n < 1 a convex cone in Rn,

The dimension of U[x1 , .•. , x n] is defined to be the dimension of the smallest
linear subspace of Rn containing U[x1 , .•• , xnl

LEMMA 3. Let U be a weak Chebyshev subspace ofdimension n and suppose
further that for every 0 < Xl < .,. < X n < 1, U[x l , ... , xn] has dimension n.
Then we may interpolate at the points constructed in Lemma 2; that is, if
u E U and U(Ti) = 0, i = 1,2,... , n, then u = 0.

Proof Suppose to the contrary that there exists a nontrivial element of U
which vanishes at '11, ..• , Tn; then it follows that det II Ui(Tj)l! = O. Hence
there exist constants C1 , .•• , cn , L~~l cj2 oF 0, such that L:~~1 CjU(Tj) = 0,
UE U. Our hypothesis on the cone U[x1 , ... , xn] guarantees that there exists
anfE Kc with L~l Cd(Tj) oF 0. Thus we may choose a constant d such that

I (-l)i {HI g(t)dt - d t Cig(T;) = 0,
~=o 'i 1-=1

g E U(UI " .. , Un ,f). (4)

Since f E Kc - U we may, as in the proof of Lemma 1, construct a nontrivial
function vex) = aof(x) + L~=l a;ui(x) which satisfies the condition
(-I)i vex) ;?o 0, X E ('Ii' Ti+1), i = 0, 1,... , n. Hence, in particular, V(Ti) = 0,
i = 1,2,... , n, and according to (4) we obtain

r ! V(x) I dx = 0;
o

this contradiction proves the lemma.

THEOREM 1. Suppose U = U(ul , ... , Un) is a weak Chebyshev subspace of
dimension n of C[O, 1] and for every °< Xl < ... < X n < 1, U[x1 , ... , x n ]

has dimension n. Then every fE KiU) has a unique best U approximation by
elements of U. Furthermore, the best approximation to f is determined by
the condition that it interpolates f at '11"'" Tn .
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Proof The proof of this theorem is a standard consequence of Lemma 3
and the definition of Kc • The details are as follows. Let us assume for
simplicity that fE KcCul ,... , un)' According to Lemma 3, there is a unique
element UoE U which interpolates f at T1 ,..., Tn' We may express the
difference f(x) - uo(x) as a ratio of determinants

det (U1 , , Un ,f)
f(x) - Uo(x) = T1 , , Tn, X

det (U1 ,... , Un)
7'1'··" Tn

This equation implies that (-I)i+n(f(x) - Uo(X» ~ 0, X E h , Ti+1),
i = 0, 1,... , n. Hence for any U E U

f I f(x) - Uo(x) I dx
o

= f (-I)i+n f H
1 (f(x) - uoCx» dx

i=O 'Ti

= f (-I)i+n fH1 (f(x) - u(x» dx
i=O 7i

:s:; t If(x) - u(x) [ ax.
o

Furtheremore, if for some U E U equality is achieved in the above inequality
then (-I)i+n(f(x) - u(x» ;> 0, x E (Ti' Ti+l) , i = 0, 1, ..., n. Hence
f(Ti) = U(Ti), i = 1,2,... , n, and so, by Lemma 3, U = Uo' Thus the theorem
is proved.

Let us observe that

is a norm one linear functional on LI[O, 1] which annihilates U, and for
fE KC(ul , ... , un)

f If(x) - Uo(x) I dx = (-I)n A(f - uo) = (-I)n A(f).
o

Thus, if fE KC(ul ,... , Un) - U, then (_l)n A(f) > O.

THEOREM 2. Let U be a weak Chebyshev subspace of dimension n of
qo, 1]. Suppose that the smallest closed linear subspace (relative to LI[O, 1])
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containing Kc(U) contains a Chebyshev subspace of dimension n on (0,
Then the points of Lemma 2 are unique.

7

Proof Suppose to the contrary that there exists another set of points°= go < g1 < ... < gn < gn+l = 1 such that

n f~j+lL (-1)i u(x)dx = 0,
J~O g;

There exists an f EKe such that

UE U.

since otherwise,

for all g in some Chebyshev subspace of dimension n, and, according to
Lemma 1 and the remark following it, this is impossible unless gi = Ti,

i = 1,... , n. Let us assume without loss of generality that f E Kc(u1 , •.• , un)
where U = U(u1 , ..• , un)' Sincefis necessarily not in Uthe remarks following
Theorem 1 tell us that

and

f (_l)Hn {Hl f(x) dx > O.
J=O 7j

Therefore there exists a positive constant c =F 1 such that

Now, the above equation has the form f~ hex) g(x) dx = 0, where h has
exactly n strict sign changes. But U(U1 , ... , Un ,j) is a weak Chebyshev
subspace of dimension n + 1. This contradicts Lemma 1, unless we abandon
our original hypothesis that the points T1 , ••. , Tn are not unique.
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2

Let us now turn to some applications of the previous results. We denote
by Sn.r = Sn.rCxl ,... , xr) the class of spline functions of degree n - 1
(n ~ 2) with knots Xl"'" Xr in (0, 1). Thus Sn.r = U(ul ,..., un+r), where
Ui(t) = ti-\ i = 1,... , n, un+;(t) = (t - x;)~-\ j = 1,..., r, and Sn.r is a
weak Chebyshev subspace of dimension n + r [9].

LEMMA 4. The smallest linear subspace containing Ke(Sn.r) contains
en [O,l].

Proof Every fE en[O, 1] is representable as

n-l f(j)(O). 1
f(x) = ~ ----y! Xl + (n _ l)!

x ±(k+l (X - t)~-l((f(n)(t))+ - (-fn)(t))+) dt,
k~O (JJk

Xo = 0, X r +1 = 1. Thus it is sufficient to prove that the function

F(x) = (k+l (x - t)~-l get) dt,
(JJk

°~ k ~ n, (6)

where get) ~ 0, t E (Xk' Xk+1), is in Ke(Sn.r)' The proof of this fact is easy.
Using representation (6) we compute the determinant

det (Ul , ,Un +r ,F)
tl , , tn+r +l

to be

Xk+l
(_l)k+r f det (Ul ,... , Un+k, uu ' Un+k+l ,... , Un+r) g(a) da,

(JJk tl , ... , tn+r +l

where uu(t) = (t - a)~-l. Since {ul(t), ... , Un+k(t), uu(t), Un+k+1(t), ... , un+r(t)} is
a weak Chebyshev system for a E (Xk , Xk+1), we conclude that (_l)k+rF E

KeCul ,... , un+r), and the proof is finished.
The proof of Lemma 4 also shows that any f E en[O, 1] with f<n) changing

signs only at Xl"'" x r is in KeCSn.r)'
A perfect spline function P of degree n with knots at gl ,..., gr,

o = go < gl < ... < gr < gr+l = 1 is any function of the form

n-l r g'+1

P(x) = I ajx; + d ~ (-1); f' (x - t)~-l dt.
J~O J~O g;
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Note that P E en- 1( - 00, (0) and (-1)1 pln)(x) = den - 1)! for x E (ti , tj-,-I),
j = 0,1, ... , r.

THEOREM 3. There exists a unique perfect spline PI' with n + r knots
o = TO < T1 < .,. < Tn+r < TnH+l = 1 such that p;i)(O) = p;i)(l) = 0,
i = 0, 1, ... , n - 1, Pr(Xj) = 0, j = 1,2,... , r, normalized so that p;n)(o) = L
Furthermore, whenever f is a continuous function in the convexity cone of
Sn,r(x1 , .•• , X,.), f has a unique bestU approximation from Sn.r, and it is

determined by interpolating f at the knots ofPr(x).

Proof. Lemma 4 clearly indicates that the hypothesis of Theorem 2 is
satisfied for Sn,r . Thus according to Theorems 1 and 2 the unique best U
approximation to finterpolatesf at the unique points Tl , ... , T n+r determined
by the condition

"'r (-l)i (i+l sex) dx = 0,
2,=0 Ti

S E Sn,r .

The proof is completed by observing that the function

Pr(x) = (l/(n - I)!) "'r (_l)i {HI (x - t)~-l dt
t=O Ti

satisfies the conditions of the corollary.
When r = 0, the unique points which satisfy (7) are the interior extrema

of Chebyshev polynomial of degree n + 1; see Rivlin [16]. Thus

Po(x) = (l/(n - I)!)r sgn Tn+1(2t - l)(x - t)~-l dt,
o

an observation due to Louboutin [5].
The existence and uniqueness of P,. was first proved by Karlin in [7].
Recently, a number of papers have appeared which treat the question of

uniqueness of U approximation [3, 4] by spline functions with fixed knots.
These papers show that any continuous function has a unique U approxi
mation by spline functions with fixed knots. Our theorem gives a charac
terization of the best approximation when f is a continuous function in the
convexity cone of Sn,r .

Karlin also proves in [7] the following uniqueness theorem which we wiH
also· show to be a consequence of Theorem 2.

Before we state Karlin's result we record below a lemma which we will
have several occasions to use.

We will say a vector Y = (Y1 ,... , Yn-i-l) in Rn+l weakly (strictly) alternates
provided that Y is nonzero and Yi Yi+1 ~ 0 (Yi Yi+1 < 0), i = 1,2, ... ,11.

In addition, we define supp( y) = {j: Yj * O}.
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LEMMA 5. Let y be any n + 1 vector which (weakly) strictly alternates
and suppose ul(x), ... , Un+1(x) are linearly independent continuous functions on
[0,1]. Then

\n+l n+l I
U(y) = I~l ajuj(x): ~l ajYj = 0\

is a (weak) Chebyshev subspace of dimension n provided that {ul(x), ... , Uj_I(X),
um(x),... , Un+1(x)} is a (weak) Chebyshev system for any j E supp(y). Further
more, any fE nj {KcCul , ... , Uj-l, Uj+1 ,... , Un+1):j E supp(y)} is in the convexity
cone of U(y).

COROLLARY 1 (Karlin). Given any data YI ,..., Yn+r+l and points°= Xl < X2 < ... < Xn-r+l = 1. If the divided difference of Yi ,..., Yi+n at
Xi , ... , Xi+n weakly alternates and r ~ n, then there exists a unique perfect
spline P with r knots such that P(Xi) = Yi , i = 1,2,..., n + r + 1.

Proof We denote the divided diffrerence of Yi ,... , Yi+n at Xi ,... , XHn
by Zi . If P(Xi) = Yi, i = 1, 2, ... , n + r + 1 and

n~l r fj+l

P(x) = L ajx
j + d I (-1)j J (X - t)~-l dt,

J~O J~O <;

then

n J<;+l
Zi = d I (-1)j M(Xi , ... , Xi+n , t) dt,

j~O <j

where M(Xi ,... , Xi+n , t) is a B-spline, defined to be the divided difference
of (x - t)~-l at x = Xi ,... , xi+n' Hence the corollary will follow from
Lemma 2 and Theorem 2 provided that

is a weak Chebyshev subspace of dimension r and its associated convexity
cone contains a Chebyshev system of dimension r. The proof of these facts
begins with the observation that every subsequence of B-splines span a weak
Chebyshev subspace [8]. Thus, since the vector Z = (Zl ,... , Zr+1) weakly
alternates, we conclude from Lemma 5 that V is a weak Chebyshev subspace.

We will now show that Sn,n+r-I(X2 ,... , x n+r ) C KcCV). Then, since n ~ r
our requirement that K,,(V) contain a Chebyshev subspace of dimension r
will certainly be satisfied.

Choose any a and b, a < °< 1 < b, and extend the sequence
Xl"'" Xn+r+l so that a and b occur with multiplicity n - 1. We label the
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i= 1,2,... ,n+ 1.

resulting partition by X-n+l ~ .,. ~ X2n+r and observe that as a consequence
of Lemma 5 M(Xi ,... , xi+n , t) E KcCV), i = -n 1, ... , n + r. The subspace
spanned by these functions restricted to [0, IJ is Sn,n+r-I(X2 , ... , xn+r)' Thus
the proof is complete.

Following a route similar to that taken in proof of Theorem 3 we obtain
another consequence of Theorems I and 2.

We will call a continuous real-valued kernel K(x, y) a nondegenerate
totally positive kernel of order r + 1 provided that

K (Xl"'" Xl) = det II K(Xi , Yj)11 ~ 0
YI ,... , Yl

for any 0 < Xl < .. ' < Xl < 1, °< Y1 < .. ' < Yl < 1, I = 1,... , r + 1, and,
in addition, dim U(K(XI' '), ... , K(xr , .)) = dim U(K(', Xl), ... , K(', Xr )) = r,
for any 0 < Xl < ." < X r < 1.

THEOREM 4. Let K(x, y) be a nondegenerate totally positive kernel of
order r --'- 1. Then given any Xl"'" X r , 0 < Xl < ... < X" < 1, there exist
points 'T1 , ... , 'Tr , 0< 'TI < '" < 'Tr < 1, such that every f in the convexity
cone of U = U(K(', Xl), ... , K(-, x r )) has a unique best U approximationfrom U
which is determined by interpolating f at 'TI , ... , 'T" • Furthermore, if the set of
functions {K(x, t): t E [0, I]} is dense in U[O, 1] then the points 7'1 , ... , 'T,. are
unique.

The proof of this theorem depends on the following observation. Let
dp.. = L;~~ (-l)i df-tj, where df-tj is a finite positive measure supported on
[Xj, (xo = 0, X r +1 = 1), j = 0, 1, ... , r. Then f(x) = f~ K(x, t) dp.,(t) is
in the convexity cone of U(K(', Xl), ... , KC, x r )).

3. AN EXTREMAL PROBLEM

In this section we require the following lemma.

LEMMA 6. Let y = (YI ,... , Yn+1) be a nonzero vector in Rn+l and let
{uI(x), ... , Un+l(X)} be a weak Chebyshev system on [0, 1]. Then there exist
points 7'1, ... , Tk , °= 'To < T I < ... < Tic < 'Tk+1 = 1, k ~ n, and a con
stant A = A(Y) c/= °such that

t (-I)i {HI Ui(t) dt = AYi,
j=O Tj

Furthermore,
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I >.. 1-1 = 1 min II h 1100,
JoMt) Ui(t) dt~yi' i=l, 2, ••• ,n+1

where II h 1100 = ess sup{1 h(x)l: °:::;; x :::;; I}.

The first part of this lemma follows from Lemma 1 and the Hobby-Rice
theorem. When {u1(x), ... , un+1(x)} is a Chebyshev system this result is due
to Krein and it is an essential ingredient in his analysis of the L-problem [10].
For a weak Chebyshev system, we may merely "apply some heat" as in
Lemma 2 to provide a variational proof of Lemma 6. The essence of this
observation is contained in [1]. Another application of Krein's L-problem
for weak Chebyshev systems is discussed in [12]. Finally, we remark that an
important point in the proof of Lemma 6 is the fact that

where u1(t; 8), ... , Un+1(t; 0) are defined in Lemma 2, converges to I >.. I as
D-* 0+. Using this fact we prove

THEOREM 5. Suppose that the sequence {u1(x), ... , Uj_l(X), Uj+1(x), ..., un+1(x)}
forms a weak Chebyshev system on (0, 1) for all j = 0, 1, ... , n + 1; then

I>..(y)I ~ I >..(e)l, e --: (1, -1,..., (_l)n), (8)

prOVided II y 1100 = max1<Kn+1 IYi I ~ 1.
If the sequence {Ul(X), ... , uj_lx), UHl(X), ..., Un+l(x)} is a Chebyshev system

forallj = 0, 1,..., n + 1, then equalityis achieved above ifandonly ify = ±e.

Proof According to our remarks preceding Theorem 5 may assume
without loss of generality that {Ul(X), ..., Uj_l(X), Uj+1(x), ... , Un+1(x)} is a
Chebyshev system for j = 0, 1,..., n + 1. We wish to prove that if II y 1100 :::;; 1
and d = I>..(y) 1/1 A(e)I ~ 1, then y = ±e. Assume to the contrary that
d:::;; 1, II y 1100 :::;; 1, and y =F ±e. Define hit) = ,\-l(y)(-1)1, Tj < t < Tj+1'
j = 0, 1,..., k, k :::;; n, where Tl , ... , Tk are defined in Lemma 5. We choose a
sign a, a2 = 1, so that h = a dhy - he vanishes in a neighborhood of zero.
Clearly, h has fewer than n sign changes and is not identically zero. However,

f h(t) uit) dt = Zj ,
o

j = 1,2,... , n + 1,

where Z = a dy - e is a weakly alternating vector. But Lemma 5 and
Remark 1 imply that h has at least n sign changes. This contradiction proves
that y = ±e and the theorem.
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Observe that, according to Lemmas 1, 5, and 6, there exist points
o = "f}o < "f}l < ... < "f}n < 1]n+l = 1 such that

f (_1)i fm Ui(X) dx = .\(e)(-l)i,
j=O 7)j

i = 1, 2, ... , n + 1.

Let us now consider some applications of Theorem 5.
Let

W~[O, 1] = {f: j(n-l) absolutely continuous, j'n) E'Leo[O, In,

and 0 :S;; Xl < X 2 < ... < Xn+r+l :S;; 1. Define

Cn(y) = {f:fE' W~[O, l],j(xi) = Yi , i = 1,2,... , n + r + I};

then we have

CoROLLARY 2. Let Zi = [Yi , , Yi+n] be the divided difference of
Yi ,..., Yi+n at Xi ,... , Xi+n, i = 1,2, , r + 1; then

where Q is a perfect spline with r knots in (0, 1) such that

i = 1,2,..., r + 1.

In [2], de Boor gives upper and lower bounds for II Q(n)lleo which are
independent of Xl"'" Xn+r+l .

Let K(x, y) be a nondegenerate totally positive kernel of order r + 1.
In [13], it was shown that there exist 0 = 1]0* < 1]1* < ... < 1]r* < 7J~+l = 1,
o :S;; Xl* < ... < X;+l :S;; 1 such that the function

r 7/.1+1
G(x) = I (-1)i f K(x,t)dt

j=O 1/j*

equioscillates r + 1 times on Xl*,... , X;+l ; that is,

G(Xi*) = (_l)i+l ll G liro , i = 1, 2, ... , r + 1.

Furthermore, d,.(.Yt) = II G liro , where drC.Yt) is the rth width of the set

.Yt = If K(x, t) h(t) dt: II h II", :S;; 11

in Leo[O, 1]. Also, for any IE.Yt, and 0 < Xl < .. , < x r < 1 for which the
vector (f(xl ), ... , f(xr+l» strictly alternates we have

min If(Xi) I :S;; II Gil", .
l~l~r+l
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We may conclude from these remarks and Theorem 5 that

min max 1 min II h II",
0("1<" -<"Nl(! Ilvll",(! JOK("i' t)h(t)dt~v"i~L2.... ,r+!
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